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Conjugate pairing in the three-dimensional periodic Lorentz gas
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We numerically evaluate the Lyapunov exponents for the three-dimensional periodic Lorentz gas in an
electric field, with a Gaussian thermostat. For small values of the field, the dynamics appears to be ergodic. For
larger fields there are chaotic and periodic windows. The Lyapunov exponents are found to obey the conjugate
pairing rule in both chaotic and stable regions, indicating that conjugate pairing can occur for small systems,

and is not restricted to the large N limit.

PACS number(s): 05.45.+b, 05.70.Ln

Hamiltonian systems have the well known property that
the Lyapunov exponents occur in pairs, that is, if A is one
exponent, then so is —N. This property follows from the
symplectic eigenvalue theorem [1], and is well understood.
Recently it has been found that systems with a constant
damping factor [2] or a thermostat [3,4] exhibit a generalized
pairing rule: For each ergodic trajectory there is a single
constant C so that if \; is one exponent, then so is C — \; for
all i. We call this the conjugate pairing rule. The case of a
constant damping factor is similar to the Hamiltonian case,
and has been proven using similar methods. For thermostated
systems, there is only numerical evidence, together with an
argument valid in the limit of a large number of particles [5].
We demonstrate here that a system with the smallest possible
number of pairs of exponents (two) for which a test may be
performed exhibits conjugate pairing to a high degree of ac-
curacy, and suggest that a more general result should exist,
independent of the number of degrees of freedom.

The Lorentz gas is a system which has enjoyed much
popularity since it was first propounded by Lorentz [6] in
1905 as a model for the motion of electrons in solids. It is
one of the few nontrivial chaotic systems about which rigor-
ous mathematical statements may be made [7]. It may be
extended to include an external electric field and Gaussian
thermostat [8], and as such, has provided much understand-
ing about the relation of microscopic nonlinear dynamics to
nonequilibrium statistical mechanics. In particular it exhibits
a steady macroscopic current in the direction of the field
while retaining reversible equations of motion.

The Lyapunov exponents of a thermostated system are
important, not only in distinguishing between chaotic and
regular regimes, but also because the sum of all the expo-
nents is related to a macroscopic transport coefficient [8]. For
example, in the nonequilibrium Lorentz gas, the sum of the
exponents is directly related to the current, which is the prod-
uct of the field and the conductivity. If the conjugate pairing
rule is valid generally for these systems, at least for the sta-
tistically significant ergodic trajectories, it is necessary to
compute only the largest and smallest exponents in order to
make this connection. The largest exponent is the easiest to
evaluate numerically, while the smallest exponent may be
easily computed using time reversed trajectories. Calculating
all of the exponents, especially for a large system, may be
very difficult.
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The three-dimensional periodic Lorentz gas consists of a
particle wandering in a hexagonal close packed lattice of
spheres, with which it undergoes hard collisions. The particle
is also subject to a force which has two components, a con-
stant electric field f in the negative z direction, and a ther-
mostating force in the direction of motion, which keeps the
kinetic energy constant. The equations of motion for a free
flight are

= W

p=—fe,+ap, 2)

where a=—p,f/p?>= — ecosf. Here, as in previous studies,
€=f/p. Expressing the momentum variables in terms of
angles

Px=Pp siné cosg, 3)
py=p sind sing, @)
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and scaling the variables so that p, m and the radius of the
spheres are all equal to 1, these equations may be integrated
analytically to obtain
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where a subscript O indicates the initial value.
In this paper the distance between the centers of the

spheres is always R=2.3. The other parameters which may
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FIG. 1. The minimal domain of ® and ®, which determine the T
orientation of the field relative to the lattice. The region is deter- o
mined by the conditions — arctany/2 <®=<arctan(1/ \/5),
0=<® <arctan(\/3cos®),
a 5

be varied are (apart from the field) the angles which give the
orientation of the lattice and the field. We must define the
direction of the field with respect to the lattice, and not the
other way round, as the field does not contain enough direc-
tional information to define a coordinate system. We define a
coordinate system x’, y', z’ aligned with the lattice, so the
lattice  vectors are Re], R(\/3e//2+e!/2) and
R(\3e./6+ \/_6_ey'/3+ez'/2). Then, the field is at spherical co-
ordinates (®,®), that is,

fr=1 sin® cos®d, 11)
fy=1 sin® sin®, (12)
fi=f cos®. (13)

The lattice symmetries may be used to restrict the domain of
® and ®. The minimal domain which is equivalent to the
whole solid angle and has values of ® and ® closest to zero
is shown in Fig. 1. For the numerical calculations it is much
simpler to work in the original coordinate system, which is
aligned to the field. Specifically, the lattice vectors are ro-
tated by an angle —® around the z’ axis, then rotated by an
angle —® around the new y’ axis, which then becomes the
y axis.

There is one orientation which is qualitatively different
from the others, which in our coordinate system corresponds
to ®=0. Unlike the two-dimensional case, the three-
dimensional Lorentz gas with periodically spaced spherical
scatterers has an infinite horizon, even when the spheres are
touching (R=2). That is, there is a set of straight line tra-
jectories (in the zero field case) of zero Liouville measure
which never hit a scatterer. They are parallel to lines of scat-
terers. This means that rigorous proofs are more difficult
(see, for example, Ref. [7]), and the zero field case is quali-
tatively different. If a nonzero field is aligned to one of these
directions, that is, ® =0, most trajectories end up in one of
these regions of phase space and remain there. For other field
orientations, the behavior is similar to the two-dimensional
case with finite horizon [9].

FIG. 2. The
O=p= arctan(l/\/f).

bifurcation  diagram for the case

Numerical simulation of this system is difficult, since the
equations determining the collisions are transcendental. Stan-
dard integration techniques fail because there is no guarantee
that the trajectory has not passed through a sphere between
successive points. We approximate the path by a circle to
obtain a lower bound on the time before the next collision.
After several such steps, when the distance to the surface of
a sphere is less than 10714, a collision takes place. Lyapunov
exponents are estimated numerically by considering neigh-
boring trajectories, using a Gram-Schmidt renormalization at
every collision. This is similar in spirit to one of the standard
algorithms [10], except that the equations are not linearized
explicitly. The collisions make it prohibitively complicated
to write down the linearized equations in this way, so we
have resorted to small (1077) rather than infinitesimal per-
turbations. Note that the scale of these perturbations is much
greater than the errors associated with the collisions.

Figure 2 shows the bifurcation diagram for the case
@ =® =arctan(1/+/2) as a function of the field strength. The
variable plotted is the value of 6 after a collision. For e<2
the trajectory appears to fill the whole of phase space. This is
an artifact of using only a single variable 6, as the attractor
has a dimension less than that of phase space. It shows that
for small values of the field, the trajectory does not approach
a stable periodic orbit, and may be ergodic within the attrac-
tor. At larger values of the field windows of stable periodic
orbits with 2, 3, 6, and 9 collisions appear. ‘“Periodic” in this
case means up to lattice translations. The symmetry of the
lattice relative to the direction of the field results in degen-
eracy, where collisions in these orbits may have equal values
of 6. Ergodicity is broken, as in the two-dimensional case
[9], since differing initial conditions lead to different stable
orbits. Choosing less special directions of field breaks the
degeneracy, but the overall structure is similar.

The Lyapunov exponents for this case (Fig. 3) show a
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FIG. 3. The four
O=d= arctan(l/\/i).

the case

Lyapunov

exponents for

very rich structure. Near e=2.15 the first two exponents are
almost equal. Near e=2.45 the second and third exponents
are equal. Near €=3.2 the first two exponents are nearly
equal and close to zero. In all of these cases, as well as the
ergodic region for small field, the conjugate pairing rule,
N{+A4=N,+ N3, is very nearly valid. To illustrate this point
we have plotted N\;—A,— A3+ N4 as a function of field in
Fig. 4. The result is (almost) random scatter with a maximum
amplitude of about 2X 10™*. The exponents presented here
were calculated using 10° collisions and are accurate to
about 3 significant figures. The conjugate pairing improves
as the number of collisions, #, increases, with an error ap-
proximately proportional to 1/n, and holds for all the other
field directions we have tried. Note that the accuracy with
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FIG. 4. The combination A{—X,— N3+ A\, which is equal to
zero if the conjugate pairing rule holds. Note the scale on the axes.

which the conjugate pairing rule is obeyed is greater than the
accuracy of the individual exponents themselves, which is
roughly proportional to 1/\/n, and that the rule is obeyed
regardless of the nature of the trajectories (either chaotic or
stable).

What is clear from this work is that the requirement for a
large number of particles in the original result [5] is not a
necessary condition for the conjugate pairing rule. This sug-
gests that the present argument, based upon the symplectic
properties of the dynamics, uses overly restrictive precondi-
tions and that it may be possible to obtain an exact proof,
valid for small systems such as this three-dimensional Lor-
entz gas. Another system in which conjugate pairing is ob-
served numerically is SLLOD dynamics, used to simulate
planar Couette flow [4].
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